

Jeff’s Laboratory

NMSW01 – Flight Manager Sequencer
Comments Revision Date Author

Initial Release A December 27, 2024 J. Mays

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

2

1. References
1. NESW02 – Flight Manager Events
2. NESW04 - Flight Manager Local Loop
3. NESW03 – Estimator

2. Purpose

This document describes the SEQUENCER software capability (SWC) as illustrated in Matlab/Simulink, and then
further discussed in C/C++ software. SEQUENCER uses states from the EVENTS [1], CMD.TVC, CMD.AFTFIN [2],
and ESTIMATOR [3] to derive flight sequence changes.

The original implementation was written in Matlab/Simulink and then derived into C/C++ software for
compilation onto hardware. Custom Simulink and C/C++ libraries were created to align the two languages.

3. Design Description

The SEQUENCER SWC is the main state machine software for the New Mays model rocket. The state machine
initializes in the Idle state and can move to other states given manual commands or other SWC outputs. The
Sequencer has a high- and low-level state machine output: Segment and State. The segment is a high-level
sequencer that describes the system’s current configuration. The state is a subset of the segment. This is
mainly applicable in BIT, since there are various tests to choose from while in the BIT segment. All segments
and states are described in Table 1 and Table 2.

Table 1: Segments

Segment Value Description
Idle 1 Default segment. Everything deactivated.
BIT 2 Built-in-Test segment used for testing and calibration of vehicle

components.
Passthrough 4 Segment where all manual commands are allowed to overwrite

commands sent internally from software. This allows for testing to be
performed on the ground.

Countdown 8 Auto sequence start, where the system is monitoring health and counting
down to a known launch time.

Launch 16 Once Countdown goes to 0, we transition to Launch. This segment is
where the pyro charges within the solid rocket motor are ignited, and the
software is configured to be ready for a liftoff event.

Boost 32 Once liftoff is detected from the EVENTS SWC, we transition to Boost. This
segment is used to denote that the rocket motor is on and that we are
ascending.

Coast 64 Segment that comes right after Boost via detection of the rocket motor
burning out.

Reentry 128 Once we are traveling back towards the ground, we transition into this
segment.

Under Chutes 256 Once certain criteria are met, we transition to this segment and deploy
the chutes. We are in this segment until we reach the ground.

Touchdown 512 Segment denoting that we are on the ground after being under chutes.
Pad Abort 16384 During Countdown, if certain criteria aren’t met, we will pad abort, keeping

the launch from occurring.
Flight Abort 32768 During ascent, if the vehicle detects that it is not following the guidance

profile, it will abort mid-flight, causing its chutes to deploy. This is a safety
measure to protect observers and property.

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

3

Table 2: BIT States

State Value Description
nichts 0 Nichts means nothing in German.
bit_tvc 1 TVC profile test. This test must be completed before we are allowed to

launch.
bit_aftfin 2 Aft Fin profile test. This test must be completed before we are allowed to

launch.
bit_sns 3 Sensor test that calibrates the accelerometer and gyroscope. This test

must be completed before we are allowed to launch.

4. Interface Control Document

The SEQUENCER SWC input and output buses are shown below. This SWC is called by the FLIGHT_MANAGER,
and its elements are populated to the vehicle state vector every cycle count.

Table 3: SEQUENCER input bus

App Direction Hierarchy Element DataType Rows Columns Comment
fm in ops.seq segment_cmd uint16_t 1 1 Ops Segment Command
fm in ops.seq state_cmd uint16_t 1 1 Ops Mode Command (Sequencer state mode)
fm out cmd.tvc bit_complete bool 1 1 TVC BIT complete flag
fm out cmd.aftfin bit_complete bool 1 1 Aft Fin BIT complete flag
fm out est.nav bit_complete bool 1 1 Sensor BIT complete
fm out events liftoff bool 1 1 Liftoff event indicator
fm out events burnout bool 1 1 SRM burnout event indicator
fm out events reentry bool 1 1 Reentry event indicator
fm out events touchdown bool 1 1 Touchdown event indicator
fm out events pad_abort bool 1 1 Pad Abort limits have been exceeded
fm out events flt_abort bool 1 1 Flight Abort limits have been exceeded

Table 4: SEQUENCER output bus

App Direction Hierarchy Element DataType Rows Columns Comment
fm out seq segment uint16_t 1 1 FM sequencer state
fm out seq state uint16_t 1 1 FM state state
fm out seq enable uint16_t 1 1 Enable flag for downstream SWC (not used)
fm out seq launch_tgo float 1 1 Time down till launch segment
fm out seq time float 1 1 Time within the current segment

5. Pre-Configured Gains

Each SWC has an initialization subroutine that initializes parameterized gains. The gains are first defined in
Matlab, and then are autocoded into a Cpp file for reference during compilation of the Cpp version of this SWC.
The following code snip shows the gain subroutine for the SEQUENCER.

function [gains] = init_gains_seq(config)

% Load common gains
common = init_gains_common();

%% Countdown
% Countdown will last 15 seconds. Subtract one tick.
gains.countdown.time = (15 * C_SEC) - common.timing.dt;

%% Launch detection
% Accel threshold that the sequencer uses to detect when we liftoff

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

4

gains.launch.boost_acc_threshold = 15 * C_M/C_SEC/C_SEC;

% Create a timeout such that we can sufficiently test that the engine is
% not going to launch and then abort/safe the vehicle
gains.launch.timeout = (10 * C_SEC) - common.timing.dt; % 10 sec timeout

%% Boost detection
% Burnout detection is now resolved to the EVENTS SWC

%% Flight Abort
% FLT-201: after 2 seconds of being in flight abort, transition back to idle
gains.flt_abort.timeout = (2 * C_SEC) - common.timing.dt; % 2 sec timeout

end

6. Software Logic

A high-level capture of the FLIGHT_MANAGER software logic, as it is defined in Simulink, is shown in Figure 1.
The SEQUENCER software capability is highlighted.

Figure 1: Flight Manager

Under the mask of the SEQUENCER block in Figure 1 is the Simulink logic shown in Figure 2. This software mainly
consists of a Matlab Function block to perform the sequencing logic.

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

5

Figure 2: SEQUENCER software capability

The above GNC_SEQUENCER is defined in the Matlab scripting below. The sequencer starts off in the IDLE state
and then is allowed to transition to other states as certain criteria is met. The reader should use this set of
scripting to infer sequencing behavior.

Note that while the following code is presented in Matlab scripting, the actual code deployed to the vehicle is
written in C/C++. The below Matlab code was used as a development tool to get the desired logic working
quickly and efficiently. Once working as intended, the C/C++ code was written to follow the same logic using
the C/C++ private functions I developed. After converting, a unit test was developed to ensure matching logic.
One of the comparisons of this test is shown in Figure 3.

function [segment, state, segment_time, countdown_time, time] = gnc_sequencer(segment_cmd, state_cmd,
tvc_bit_complete, aftfin_bit_complete, sns_bit_complete, liftoff, burnout, reentry, ...
 chute_cmd, touchdown, pad_abort, flt_abort, COMMON, SEQ, DT)
% GNC Sequencer logic for New Mays
%
% Author: Jeff Mays

% Setup persistent variables
persistent segment_ state_ segment_time_ prev_segment_
persistent prev_segment_cmd_ prev_state_cmd_
persistent time_ countdown_time_
persistent bit_lockout

% Load in segment defines from a common script/location
seq = fm_sequencer_states();
IDLE = seq.segment.idle;
BIT = seq.segment.bit;
PASSTHROUGH = seq.segment.passthrough;
COUNTDOWN = seq.segment.countdown;
LAUNCH = seq.segment.launch;
BOOST = seq.segment.boost;
COAST = seq.segment.coast;
REENTRY = seq.segment.reentry;
CHUTES = seq.segment.under_chutes;
TOUCHDOWN = seq.segment.touchdown;
PAD_ABORT = seq.segment.pad_abort;
FLT_ABORT = seq.segment.flt_abort;

% states

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

6

state_nichts = seq.state.nichts;
state_bit_tvc = seq.state.bit_tvc;
state_bit_aftfin = seq.state.bit_aftfin;
state_bit_sns = seq.state.bit_sns;

% If first run through, init outputs
if (isempty(segment_))
 segment_ = IDLE;
 prev_segment_ = uint16(0);
 state_ = state_nichts;
 segment_time_ = 0.0;
 prev_segment_cmd_ = uint16(0);
 prev_state_cmd_ = uint16(0);
 time_ = 0.0;
 bit_lockout = false;
 countdown_time_ = 999.0;
end

% If the segment command hasnt changed, null the command
if (segment_cmd == prev_segment_cmd_)
 segment_cmd = uint16(0);
end

% If the state command hasnt changed, cancel the command
if (state_cmd == prev_state_cmd_)
 state_cmd = uint16(0);
end

% Time
time_ = time_ + DT;

%% Segment Changes

switch segment_

 case IDLE
 segment_time_ = segment_time_ + DT;
 if (segment_cmd == BIT)
 segment_ = BIT;
 state_ = state_nichts;
 elseif (segment_cmd == PASSTHROUGH)
 segment_ = PASSTHROUGH;
 state_ = state_nichts;
 elseif (segment_cmd == COUNTDOWN && tvc_bit_complete && aftfin_bit_complete && sns_bit_complete)
 segment_ = COUNTDOWN;
 state_ = state_nichts;
 end

 case BIT
 segment_time_ = segment_time_ + DT;
 if (segment_cmd == IDLE && bit_lockout == false)
 % Only when the BIT completes will the segment be allowed to
 % transition away from BIT
 segment_ = IDLE;
 state_ = state_nichts;

 elseif (tvc_bit_complete == true && state_ == state_bit_tvc) || ...
 (aftfin_bit_complete == true && state_ == state_bit_aftfin) || ...
 (sns_bit_complete == true && state_ == state_bit_sns)
 state_ = state_nichts; % Leave the test bit state
 bit_lockout = false;

 elseif (state_cmd == state_bit_tvc && bit_lockout == false)
 bit_lockout = true;
 state_ = state_bit_tvc;

 elseif (state_cmd == state_bit_aftfin && bit_lockout == false)
 bit_lockout = true;
 state_ = state_bit_aftfin;

 elseif (state_cmd == state_bit_sns && bit_lockout == false)
 bit_lockout = true;
 state_ = state_bit_sns;
 end

 case PASSTHROUGH
 segment_time_ = segment_time_ + DT;
 if (segment_cmd == IDLE)

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

7

 segment_ = IDLE;
 state_ = state_nichts;
 end

 case COUNTDOWN
 segment_time_ = segment_time_ + DT;
 countdown_time_ = SEQ.countdown.time - segment_time_;

 if (segment_cmd == IDLE)
 segment_ = IDLE;
 state_ = state_nichts;
 countdown_time_ = 999.0; % Reset timer

 elseif (segment_cmd == PAD_ABORT || pad_abort)
 segment_ = PAD_ABORT;
 state_ = state_nichts;
 countdown_time_ = 999.0; % Reset timer

 elseif (countdown_time_ < 0)
 segment_ = LAUNCH;
 state_ = state_nichts;
 end

 case LAUNCH
 segment_time_ = segment_time_ + DT;
 if liftoff
 segment_ = BOOST;
 state_ = state_nichts;

 elseif flt_abort
 segment_ = FLT_ABORT;
 state_ = state_nichts;

 elseif (segment_time_ > SEQ.launch.timeout)
 segment_ = PAD_ABORT;
 state_ = state_nichts;
 end

 case BOOST
 segment_time_ = segment_time_ + DT;
 if burnout
 segment_ = COAST;
 state_ = state_nichts;

 elseif flt_abort
 segment_ = FLT_ABORT;
 state_ = state_nichts;
 end

 case COAST
 segment_time_ = segment_time_ + DT;
 if reentry
 segment_ = REENTRY;
 state_ = state_nichts;

 elseif flt_abort
 segment_ = FLT_ABORT;
 state_ = state_nichts;
 end

 case REENTRY
 segment_time_ = segment_time_ + DT;
 if chute_cmd
 segment_ = CHUTES;
 state_ = state_nichts;
 end

 case CHUTES
 segment_time_ = segment_time_ + DT;
 if touchdown
 segment_ = TOUCHDOWN;
 state_ = state_nichts;
 end

 case TOUCHDOWN
 segment_time_ = segment_time_ + DT;
 % Do nothing. We want to have to power cycle the vehicle before we
 % can get back into idle (resets SW states)

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

8

 case PAD_ABORT
 segment_time_ = segment_time_ + DT;
 % Do nothing, make OPS command out of pad abort
 if (segment_cmd == IDLE)
 segment_ = IDLE;
 state_ = state_nichts;
 end

 case FLT_ABORT
 segment_time_ = segment_time_ + DT;
 if (segment_time_ > SEQ.flt_abort.timeout)
 segment_ = IDLE;
 state_ = state_nichts;
 end

end

%% Reset time every time we are in a new segment
if (segment_ ~= prev_segment_)
 segment_time_ = 0.0;
 prev_segment_ = segment_;
end

%% Set old
if (segment_cmd > 0)
 prev_segment_cmd_ = segment_cmd;
end
if (state_cmd > 0)
 prev_state_cmd_ = state_cmd;
end

%% Set outputs
segment = segment_;
state = state_;
segment_time = single(segment_time_);
countdown_time = single(countdown_time_);
time = single(time_);

end

7. Software Validation & Unit Tests

Justification for Lack of Unit Test Development: This project is for-fun. It is not meant to
represent the actions that would be taken in a fully staffed and/or a human safety critical
aerospace project/program. Rather than a long and cumbersome unit test development
and documentation process of each SWC, desktop simulations were used to provide
evidence of sufficient behavior out of this particular SWC. While not all possible code
coverage avenues are explicitly checked in the nominal monte-carlo simulations, all
requirements are enforced in post processing. This is acceptable for the level of rigor
required for this project.

The following plots are shown from a nominal simulation where the Simulink version is used. The C/C++
software was then compiled, and the same input buses used were passed through the shared object for
comparison in the Matlab environment. The following plot shows the relationship between the two versions.

JeffsLaboratory.com NMSW01 – Flight Manager Sequencer

9

Figure 3: Segment Comparison (note that there is a simulation issue here where the touchdown segment
is not reached, this is known as was fixed)

